• ระบบจำนวนจริง | ||
จากแผนผังแสดงความสัมพันธ์ของจำนวนข้างต้น จะพบว่า ระบบจำนวนจริง จะประกอบไปด้วย | ||
1. จำนวนอตรรกยะ หมายถึง จำนวนที่ไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็ม หรือทศนิยมซ้ำได้ ตัวอย่างเช่น √2 , √3, √5, -√2, - √3, -√5 หรือ ¶ ซึ่งมีค่า 3.14159265... | ||
2. จำนวนตรรกยะ หมายถึง จำนวนที่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็มหรือทศนิยมซ้ำได้ ตัวอย่างเช่น | ||
เขียนแทนด้วย 0.5000... | ||
เขียนแทนด้วย 0.2000... | ||
• ระบบจำนวนตรรกยะ | ||
จำนวนตรรกยะยังสามารถแบ่งเป็น 2 ประเภท คือ | ||
1. จำนวนตรรกยะที่ไม่ใช่จำนวนเต็ม หมายถึง จำนวนที่สามารถเขียนให้อยู่ในรูปเศษส่วนหรือทศนิยมซ้ำได้ แต่ไม่เป็นจำนวนเต็ม ตัวอย่างเช่น | ||
2. จำนวนเต็ม หมายถึง จำนวนที่เป็นสมาชิกของเซต I = {..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...} เมื่อกำหนดให้ I เป็นเซตของจำนวนเต็ม | ||
• ระบบจำนวนเต็ม | ||
จำนวนเต็มยังสามารถแบ่งได้อีกเป็น 3 ประเภทด้วยกัน | ||
1. จำนวนเต็มลบ หมายถึง จำนวนที่เป็นสมาชิกของเซต I - โดยที่ I - = {..., -4, -3, -2, -1} เมื่อ I - เป็นเซตของจำนวนเต็มลบ | ||
2. จำนวนเต็มศูนย์ (0) | ||
3. จำนวนเต็มบวก หมายถึง จำนวนที่เป็นสมาชิกของเซต I+ โดยที่ I+ = {1, 2, 3, 4, ...} เมื่อ I+ เป็นเซตของจำนวนเต็มบวก | ||
จำนวนเต็มบวก เรียกได้อีกอย่างว่า "จำนวนนับ" ซึ่งเขียนแทนเซตของจำนวนนับได้ด้วยสัญลักษณ์ N โดยที่ N = I+ = {1, 2, 3, 4, ...} | ||
• ระบบจำนวนเชิงซ้อน | ||
นอกจากระบบจำนวนจริงที่กล่าวมาข้างต้นแล้ว ยังมีจำนวนอีกประเภทหนึ่ง ซึ่งได้จากการแก้สมการต่อไปนี้ | ||
x2 = -1 | ∴ x = √-1 = i | |
x2 = -2 | ∴ x = √-2 = √2 i | |
x2 = -3 | ∴ x = √-3 = √3 i | |
จะเห็นได้ว่า “ไม่สามารถจะหาจำนวนจริงใดที่ยกกำลังสองแล้วมีค่าเป็นลบ” เราเรียก √-1 หรือจำนวนอื่นๆ ในลักษณะนี้ว่า “จำนวนจินตภาพ”และเรียก i ว่า "หนึ่งหน่วยจินตภาพ" เขียนแทนด้วยสัญลักษณ์ i | ||
ยูเนียนของเซตจำนวนจริงกับเซตจำนวนจินตภาพ คือ " เซตจำนวนเชิงซ้อน " (Complex numbers) |
ที่มา http://blog.eduzones.com/araya/33010